The Race Is On to Build a Better Battery
At first glance, all seems serene on a spring morning at the research-and-development campus of SK Innovation, one of Korea’s biggest industrial conglomerates. The campus sits in Daejeon, a tidy, planned city an hour’s high-speed-train ride south of Seoul that the national government has built up as a technology hub. Dotting SK’s rolling acres are tastefully modern glass-and-steel buildings that wouldn’t be out of place in a glossy architecture magazine. One contains a library, its tables stocked with rolls of butcher paper and Post-it notes to spur creativity. Another houses an espresso bar where engineers queue for caffeination. A cool breeze blows. Birds chirp. Pink cherry blossoms bloom.
Then Jaeyoun Hwang, who directs business strategy for SK’s R&D operation, steers the Kia electric car in which he is driving me around the campus to a stop at the top of a hill. In front of us looms K-8, a seven-story-tall cube of a building sheathed in matte silver siding and devoid of any visible windows. Its only discernible marking is, at the top corner of one wall, a stylized orange outline of a familiar object: a battery. K-8 appears whimsical, almost a bauble, until Hwang explains that four other buildings on the campus, plus another one under construction, also are for battery research—an activity at SK that employs several hundred people and counting. When I ask to go inside K-8 for a look, Hwang says it’s out of the question. When I raise my camera to take a picture, he stops me. “In this area,” he says, “photographs of the buildings are prohibited.”
SK has a sprawling R&D campus because it has a storied technological pedigree—as Korea’s oldest oil refiner. Now the petrochemical company is hitching its future to electric cars. It has inked deals to make batteries for some of the world’s largest automakers, notably Volkswagen AG, which, following a crippling scandal in which it was found to have deliberately and repeatedly violated pollution rules in producing its diesel vehicles, has pledged a green corporate rebirth, shifting much of its lineup to cars that run on electricity rather than oil. SK has made huge deals with VW and other automakers, including Daimler AG, which says it will sell 10 pure-electric car models by 2022, and Beijing Automotive Group, or BAIC Group, China’s largest maker of pure-electric cars. SK is racing to build massive battery plants in China, Europe, and the United States, including one an hour’s drive from Atlanta. It is moving by 2025 to balloon its battery production, mulling investing some $10 billion in the effort over that span. That’s a serious number even for a behemoth that in its various corporate incarnations, has spent more than a half-century processing black gold sucked from the ground. “These days,” Hwang says of SK’s battery business, “the order volume is huge.”
GLOBAL PLAYER: CEO Kang Sun has helped Amprius raise money from both American and Chinese backers.
Photograph by Christie Hemm Klok for Fortune
For years, the race to build a better battery was contained to consumer electronics. It was a growing business, but it wasn’t going to reorder capitalism. Now, amid an onslaught of electric cars on the road and renewable electricity on the power grid, the race is gearing up into a corporate and geopolitical death match. It suddenly has the dead-serious attention of many of the planet’s biggest multinationals, particularly auto giants, oil majors, and power producers. Having historically dismissed affordable energy storage as a pipe dream, they now view it as an existential threat—one that, if they don’t harness it, could disintermediate them. It also divides the world’s major economic powers, which see dominance of energy storage in the 21st century as akin to control of coal in the 19th century and of oil in the 20th. One clear sign: Battery-technology competition is deeply woven into the ongoing trade tensions between the U.S. and China.
For more about the battery industry, read “Baking a ‘Jellyroll’: How Batteries Are Made.”
Even Jeffrey Chamberlain, a battery geek, finds today’s shift breathtaking. For years he worked at Argonne National Laboratory, heading one of the U.S. government’s top battery-research efforts. Now he leads a Chicago-based venture-capital fund, Volta Energy Technologies, that takes money from nervous power, oil, and other companies and invests it in energy-storage-technology startups. The corporations have concluded they have to hedge their bets, Chamberlain says, because “what renewable energy represents to these companies is massive destruction.” China, meanwhile, has declared a world-leading battery industry a strategic national priority, doling out incentives to get the job done. “What does that imply?” Chamberlain asks. “Are they the new Saudi Arabia of batteries?”
Unprecedented billions of dollars are pouring into battery research and development, rendering batteries today the sort of technological target that semiconductors were a generation ago. A particularly fast stream is flowing into startups, each promising more brashly than the next to have cracked the code on the energy-storing black box. That money is coming from multinationals scrambling for technological fixes, from venture-capital firms looking for the next big home run, and from sundry billionaires who say they want to save the planet. And it’s coming from both sides of the Pacific.
Some startups will win big; many more will implode. Either way, they are the leading edge of the battery race—the pack in which the jostling is most cutthroat, the daring is most on display, and the long-term breakthroughs are most likely to develop. They’re also more talkative than the big players about what they’re doing; that stands to reason because they’re hungrier for investment.
Today’s global battery race has two main heats. One, already well underway, is for batteries for electric cars, whose market value the energy-data firm Wood Mackenzie projects will jump to $41 billion in 2024, from $13 billion in 2017. This is the market that has prompted Elon Musk’s Tesla to build a massive battery plant—what Tesla calls a “gigafactory”—in Nevada. This is the market that’s pushing essentially every global automaker—embarrassed by Tesla in the electric-car market and adamant not to be embarrassed anymore—to lob massive orders at SK and other major battery producers, almost all headquartered in Asia. It’s also inducing them to invest in startups promising technological leaps.
The other heat, just beginning, is for batteries for the electric grid: factory-size devices designed to store massive amounts of energy, potentially for days or weeks at a time. Such technology could enable an epic transition from fossil fuels, such as coal and natural gas, which are altering the climate but can be fired on or off at will, to the sun and the wind, which are clean but don’t always shine or blow. The market for them remains nascent and largely dependent on government subsidies—which is to say that it’s risky and anyone’s to win. A swashbuckling band of technologists, bankrolled by deep-pocketed investors from a Bill Gates–backed fund to Saudi Aramco, are gunning to get their long-term energy-storage devices to market first.
At stake in both heats is more than the fate of some entrepreneurs and their speculative backers. At stake is the future of the global economy. Ever since Benjamin Franklin flew a key on a kite in a lightning storm, electricity has proved difficult to store in large quantities. That’s why cars still run on oil, which can be stored easily in tanks. It’s why transmission lines still are required to transport electricity hundreds or thousands of miles from where it’s generated to where it’s consumed. And it’s why the vast majority of electricity still is produced by burning fossil fuels, which, for all their environmental downsides, are ruthlessly reliable. Flick a switch, the system springs to life, and the lights go on.
If electricity could be stored in large amounts at low cost, radical changes could follow. The electric car, which has fewer parts than a petroleum-powered vehicle and thus, at scale, should be cheaper to manufacture, could eclipse the internal-combustion engine. Sunlight could be stored as electricity during the day, and wind power at night, and renewable energy could, at acceptable cost, be made to behave like a constant, rather than as an intermittent, energy source. Given that transportation and electricity together account for about 40% of global greenhouse-gas emissions, humanity’s carbon output—which scientists warn will have to crater essentially to zero by mid-century to avoid particularly dangerous climate change—actually might start plummeting.
A grand reordering of economic winners and losers likely would result, with established players scrambling for new business models. Automakers would have to retool or die. Oil companies would have to reinvent themselves at least in significant part as renewable-energy providers or shrivel into oblivion. Utilities would have to pivot to a new and decentralized business in which they operated huge numbers of solar panels and wind turbines and batteries. Figuring out how to store electricity economically, in other words, could short-circuit the global economy and then rewire it.
Can it be done? I burned a lot of fossil fuel this spring trying to find out. I drove around Northern California and flew around the world. In Silicon Valley, Boston, China, and Korea, I found startups clawing their way up and corporations struggling not to fall down. All were nervous, though some were more forthcoming about that than others. Energy storage today is the mother of all frothy markets.
The battery is, in its basic architecture, a simple device. It contains four main parts: a positively charged electrode, called a cathode; a negatively charged electrode, called an anode; a substance that connects them, called an electrolyte, which typically is a liquid; and a membrane, known as a separator, that prevents certain particles from traveling from one electrode to the other in a “short circuit,” which could spark a fire. A too-thin separator was implicated in a rash of fires in 2016 in some Samsung phones.
When a battery is powering a device, chemical reactions inside it break atoms into positively charged particles, called ions, and negatively charged particles, called electrons. The ions and electrons move simultaneously from the anode to the cathode, but they move in different streams. The ions move through the battery; the electrons create a circuit through the device, powering it.
In a conventional battery, when all its ions and electrons have moved from the anode to the cathode, the battery is dead. A rechargeable battery can be plugged in to receive new electricity, positioning ions and electrons in the anode to power the device again.
MANO A NANO: An Amprius machine that applies gases to metal to produce “silicon-nanowire” anodes.
Photograph by Christie Hemm Klok for Fortune
A major goal in battery research is maximizing “energy density”: the amount of energy that can be shoved into a battery of a given volume or weight. That depends largely on the number of ions its anode can hold; the more ions, the more electrons the battery will have available to keep the device running. This primacy of ions and anode frames two crucial realities of today’s battery quest.
One is that virtually all batteries today get their ions from the same element: lithium. Lithium is a particularly “light” element, which means its ions are particularly small, which means a particularly large number of them can be stuffed into an anode. So most electric devices today, from iPhones to Teslas, are powered by “lithium-ion” batteries.
The other reality is that a crucial part of today’s battery quest is the bid to build a better anode: one that can accommodate especially massive quantities of lithium ions.
Source : http://fortune.com